
Regular Expressions
OPS102 Week 12 Class 1

Tiayyba Riaz/John Sellens
April 1, 2024

Seneca Polytechnic

Outline

What Are Regular Expressions?

Components of Regular Expressions

Regular Expressions in Bash Scripts

Summary

OPS102 W12C1 - Regular Expressions 1/20

What Are Regular Expressions?

Regular Expressions

• Regular expressions (regex) are powerful tools used for pattern matching in
text.

• You have used grep previously to find specific strings in file. You might also
have used the find functionality in Microsoft Word.

• Sometimes we want to search for strings that follow a complex pattern
instead of specific string, like finding all postal codes or email addresses
from a database file.

OPS102 W12C1 - Regular Expressions 2/20

Regular Expressions - 2

• In order to work with patterns, as opposed to specific strings, we use regular
expressions.

• Regular expressions are widely used in applications, such as:
• searching and filtering log files
• manipulating configuration files
• scripting
• text processing

OPS102 W12C1 - Regular Expressions 3/20

Regular Expressions - 3

• The simplest regular expression is a string of characters that matches itself.
This is like finding a string like "Hoopla" in a text file.

• Complex regular expressions use letters, numbers, and, special characters to
define many different strings which follow a pattern.

• A regular expression can match a string in more than one place.
• There can be multiple matches on a single line.

• The (simple) regular expression "aps" will match the following lines
This bridge may collapse.
I do not like capsicum.
Did you see that snapshot of the caps with snaps?

OPS102 W12C1 - Regular Expressions 4/20

Regular Expressions - 4

• Linux and Windows provide various command-line tools that support regular
expressions e.g. "grep", "egrep", "sed", "awk", "vim".

• We will be using "egrep" for this lesson.
• "egrep" is an “extended” version of "grep".

OPS102 W12C1 - Regular Expressions 5/20

Regular Expressions - Simple Examples

egrep friend poem2.txt Matches all occurrences of the word
friend. It will match any string hav-
ing "friend" as a substring in
it, like "friend", "friendly",
"friendship"

egrep 'friend' poem2.txt It is recommended to enclose the
search pattern in quotes to avoid shell
expansion.

egrep '[fF]riend' poem2.txt Matches both "friend" and
"Friend"

OPS102 W12C1 - Regular Expressions 6/20

Components of Regular Expressions

Components of Regular Expressions

• The following are the seven most commonly used components of a regular
expression:

• Atoms
• Wildcards
• Character Classes
• Repetition
• Alternation
• Groups

• These components can be used to define simple to complex patterns.
• In the next slides we will look at each of these and their examples.

OPS102 W12C1 - Regular Expressions 7/20

Atoms

• Atoms are the building blocks of regular expressions.
• They can be individual characters, metacharacters, or escape sequences.
• For example:

• "a" matches the character "a".
• "." matches any single character (except a newline).

• Newlines are normally not considered – just record separators.

egrep 'a.' testfile Matches "ax" or "a0" or "a " (a followed by
space) i.e. "a" followed by any character.

egrep 'c.t' testfile Matches "cat", "cet", "cut", but not
"can" or "ct"

egrep '.....' testfile Matches any 5 characters. e.g. "chair",
"c123gh"

OPS102 W12C1 - Regular Expressions 8/20

Wildcards

• Wildcards are special characters that represent repeating patterns in a string.
• "*" matches zero or more occurrences of the preceding atom.
• "+" matches one or more occurrences of the preceding atom.
• "?" matches zero or one occurrence of the preceding atom.

egrep 'ab*' testfile Matches "ab" or "abb" or "abbbbb" (any
number of b even zero)

egrep 'ab?' testfile Matches "a", or "ab"
egrep 'a+b' testfile Matches "ab", or "aab", or "aaaaaaab"

(any number of a but not zero)
• Question: What does "a.*" match?

OPS102 W12C1 - Regular Expressions 9/20

Character Classes

• Character classes allow you to specify a set of characters to match against.
• Similar to bash globbing character classes.

• "[abc]" matches any one of the characters "a", "b", or "c".
• "[0-9]" matches any one digit.
• "[A-Z]" matches any uppercase letter, "[A-Za-z]" matches any letter.
• If a character class starts with a caret ("^"), the class is negated – it matches
any character not in the class.

• Wildcard characters lose their special meanings inside a class.

egrep '[aeiou]' testfile Matches any single vowel.
egrep '[aeiou]*' testfile Matches zero or more vowels.
egrep '[()*{}?]' testfile Matches opening and closing parenthesis,

braces, question mark or asterisk.

OPS102 W12C1 - Regular Expressions 10/20

Repetition

• Repetition specifies how many times a preceding atom can occur in a match.
• Like ?, *, and + but more flexible.

• We can specify an exact number, a range, or an upper or lower bounds to the
amount of times an atom is matched.

• "{n}" matches exactly n occurrences.
• "{n,}" matches at least n occurrences.
• "{n,m}" matches at least n and at most m occurrences.
• "{,m}" matches at most m occurrences.

egrep '[aeiou]{3}' testfile Matches exactly 3 vowels together.
egrep '[aeiou]{3,5}' testfile Matches exactly 3 or 4 or 5 vowels

together.

OPS102 W12C1 - Regular Expressions 11/20

Alternations

• Alternation allows you to specify multiple alternatives for a pattern.
• This is implemented with the or ("|") operator.
• e.g. "cat|dog" matches either "cat" or "dog".

egrep 'ford|chevy' cars will match lines having either ford or
chevy

egrep 'Mr|Mrs Smith' file Will match "Mr" or "Mrs Smith".
Will not match "Smith" if it comes after
"Mr".
How are you Mr Smith and Mrs Smith?

OPS102 W12C1 - Regular Expressions 12/20

Groups

• Matching patterns can be grouped to be treated as one unit by using
parenthesis.

• i.e. A group is treated as a regular expression atom.

• The parentheses group the contents but are not part of the search pattern.

egrep '(ab)+' file Matches one or more occurrences of
the sequence "ab", e.g. 3 matches in
Mabmabmababababmmmm

egrep '(Mr|Mrs) Smith' file Matches "Mr Smith" or "Mrs
Smith"

egrep 'a(abc)*z' file Matches: "az", "aabcz", "aabcabcz"

OPS102 W12C1 - Regular Expressions 13/20

More Special Rules

• "^" – Anchors a match to the start of a line.
• "$" – Anchors a match to the end of a line.
• "\" – Quotes (escapes) special characters.
• "\ <" – slightly non-standard – Anchors to the beginning of a word.
• "\ >" – slightly non-standard – Anchors to the end of a word.

egrep '^a' file Matches a letter "a" at the start of a line.
egrep '^a.*\?.*b$' file Matches an entire line that starts with "a"

and ends with "b" and has a question mark
somewhere in the middle.

OPS102 W12C1 - Regular Expressions 14/20

Regular Expressions in Bash Scripts

Regular Expressions in Bash Scripts

• Bash does not support regular expressions directly
• But bash scripts often use other commands that do

• e.g. grep, egrep, sed, awk, …

• Our scripts may want to select or modify data from files
• Or, we might want to use a regex to validate input!

OPS102 W12C1 - Regular Expressions 15/20

Validating Script Input

• We learned about simple checking of user inputs in some of our scripts
• e.g. Use test to compare an input variable against a known value.

• We often want to use a regular expression to ensure that our input is in the
expected format.

• e.g. Check that an input is a valid number, or that it looks like a possible postal
code, etc.

• Design Pattern: use echo piped into egrep and check exit status.

OPS102 W12C1 - Regular Expressions 16/20

Validating Script Input Example

The typical method to check an input against a validating regular expression is to
use echo to pipe the value into egrep and check the exit status.

For example:

read -p "Please enter a number:" num
read will (usually?) trim leading and trailing spaces (if any)
echo "$num" | egrep -q '^[0-9]+$'
if [$? -eq 0]; then

echo "this is an unsigned int: $num"
fi

You can of course use any suitable regex.
Remember that the status of a pipe is that of the final command.

OPS102 W12C1 - Regular Expressions 17/20

More Interesting Validating Regular Expressions

Check for a signed integer:
echo "$num" | egrep -q '^[+-]?[0-9]+$'

Check for a (possibly) floating point number:
echo "$num" | egrep -q '^[+-]?[0-9]+[.]?[0-9]*$'

Check for a Canadian postal code (format):
echo "$code" | egrep -q '^[A-Z][0-9][A-Z] *[0-9][A-Z][0-9]$'

And, of course, far more complicated variants.

OPS102 W12C1 - Regular Expressions 18/20

Summary

Summary of Regular Expressions

• Regular expressions are a way to describe patterns used to match strings of
text.

• Also commonly referred to as a “regex”.

• Regular expressions are very commonly used in system administration, text
processing, text editing, input validation, and other programming tasks.

• Lots of tools in Linux and Windows make use of regular expressions.

OPS102 W12C1 - Regular Expressions 19/20

Summary of Regex Syntax

"." Match any character
"+" Match one or more occurrences of preceding pattern
"*" Match zero or more occurrences of preceding pattern
"?" Match zero or one occurrence of preceding pattern
"[abc]" Match any of the characters from the sequence given in

brackets
"{n}" Matches the preceding atom ’n’ times exactly
"{n,m}" Matches the preceding atom ’n’ times but not more than ’m’
"{n,}" Matches the preceding atom ’n’ or more times
"(xyz)+" Match one or more occurrences of the group xyz
"(xyz|abc)" Match either xyz or abc
"(xy|ab)c" Match either xyc or abc

OPS102 W12C1 - Regular Expressions 20/20

	What Are Regular Expressions?
	Components of Regular Expressions
	Regular Expressions in Bash Scripts
	Summary

