
File System Security: Permissions
OPS102 Week 4 Class 1

Tiayyba Riaz/John Sellens
September 23, 2024

Seneca Polytechnic



Outline

Introduction to Permissions

Viewing Permissions

Setting Permissions

Special Permission Bits

Default Permissions and Umask

File and Folder Permissions in Windows

OPS102 W4C1 - File System Security: Permissions 1/17



Introduction to Permissions



File System Security: Setting Permissions

• In multi-user operating systems it is very important to be able to control who
has access to files and folders.

• This is achieved by setting permissions of files and folders
• All modern operating systems provide ways to set such permissions
• Linux provides commands and command options for setting permissions

• Standard Linux/UNIX permission mechanisms are fairly simple.
• But usually sufficient.
• There are also more advanced ACLs (Access Control Lists).
• Which we will not be covering.

OPS102 W4C1 - File System Security: Permissions 2/17



File Permissions in Linux

• Every thing in the file system has its own set of permissions (or ”mode”).
• Permissions determine who may access a file, and in what way(s).
• There are three permission indicator, in three sets (user, group, others):

r Read Read access to the file’s contents.
w Write Permission to modify the file’s contents.

Usually want read with write.
x (or s) Execute Allows the execution of file as a command.

Scripts also need read permission to execute.
Might be s: Covered later …

– Indicates that the related permission is not granted.

OPS102 W4C1 - File System Security: Permissions 3/17



Directory Permissions in Linux

• Directory permissions are similar to file permissions.
• But have slightly different meanings.

r Read Grant permission to read the contents of directory,
list contents using the "ls" command.

w Write Grant permission to change/edit directory content,
create/delete/rename subdirectories and files in that directory.
You can delete a file regardless of the file’s permissions.

x Access “Pass-through” permission – allows access to and through the
directory, but does not in itself allow reading or writing.
If you know where you’re going, this permission allows access
through intervening directories.

OPS102 W4C1 - File System Security: Permissions 4/17



Viewing Permissions



Viewing Permissions

The "-l" (long) option to "ls" shows permissions (and other details) about files
and directories.

• "ls -d" on a directory, shows the directory, not the things it contains.
• Directory permissions allow or prevent removing or renaming files (or other
objects) in the directory.

e.g. For the path "dirA/fileB", if you have pass-through or better access to
"dirA"

• Read permission on "fileB" allows reading the file.
• Write permission on "dirA" allows removing "fileB".
• If you don’t have write permission on "fileB" the "rm" command will
(usually) prompt for confirmation.

OPS102 W4C1 - File System Security: Permissions 5/17



Sample "ls" Commands for Directories

Sample commands to view directory permissions:

• "ls -ld" – shows permissions and details of your current diectory.
• "ls -ld dir1" – shows permissions and details of "dir1", if you have
read access (or better) to the parent of "dir1". (I think.)

• "ls -l dir1" – shows permissions and details of the contents of "dir1",
if you have read permissions on "dir1".

OPS102 W4C1 - File System Security: Permissions 6/17



Decoding Permissions in "ls -l" Output

• Character 1: file type (regular, directory, link, device, etc)
• Character 2-4: Permissions for owner of the object
• Character 5-7: Permissions for members of the group that the object belongs
to

• Character 8-10: Permissions for all other users

OPS102 W4C1 - File System Security: Permissions 7/17



Setting Permissions



Changing Permissions with "chmod"

• The "chmod" (”change mode”) command is used to change/grant/revoke
permissions to different users/groups

• "chmod permissions file"
• There are two methods to set permissions with "chmod"

• Symbolic method: Using alphabetic characters
• Octal Method: Using Octal numbers

OPS102 W4C1 - File System Security: Permissions 8/17



Symbolic Method for "chmod"

• Permissions are set for:
• user (u), group (g), others (o), or all (a)

• Permissions are set by:
• adding (+), removing (-) and/or setting(=)

• Permissions are set to:
• read (r), write (w) and/or execute (x)

Action Sample Command
Add Permission "chmod g+rw file1" – add group rw permissions
Remove Permission "chmod a-w test.txt" – remove all write permissions
Set Permission "chmod go=rx file1" – set r-x for group and other
Combination "chmod u+rx,g-x,o= file1" – for you to decode

OPS102 W4C1 - File System Security: Permissions 9/17



Octal Method for "chmod"

• Permissions can be set explicitly by "chmod" with an octal number.
• Octal numbers represent the permission bits - see "man 2 stat"
• A set bit (value 1) grants the permission, unset (value 0) does not grant.
• read = 4, write=2, execute=1
• Combine the octal representation of user, group, and other permissions to
form a 3-digit octal number e.g. rwxr-x--- is octal 750.

OPS102 W4C1 - File System Security: Permissions 10/17



Octal Method for "chmod" Examples

• You can use the "chmod" command with 3 octal digits to represent the
permissions for user, group, and others.

• The command "chmod 754 file1.txt" means the following
User Group Other

Permissions rwx r-x r--
Binary 111 101 100
Octal 7 5 4

• The command "chmod 755 file1.txt" sets the permissions to:
rwxr-xr-x

• The command "chmod 531 file1.txt" sets the permissions to :
r-x-wx--x

OPS102 W4C1 - File System Security: Permissions 11/17



Special Permission Bits



setuid, setgid, and sticky bits

There are 3 additional bits in a file’s mode, which come before the permission
bits, 12 bits in all.

• setuid: When an executable has the setuid bit enabled, it runs with the
permissions of the file owner. This allows it to perform actions that would
typically require the owner’s privileges.

• setgid: Similarly, when an executable has the setgid bit enabled, it runs with
the permissions of the group associated with the file. This enables it to
access resources and perform tasks limited to members of that group.

• sticky bit: The sticky bit is typically used on directories. When applied, it
ensures that only the owner of a file or the root user can delete or modify it.
This helps prevent accidental or unauthorized deletion of files by other users.

OPS102 W4C1 - File System Security: Permissions 12/17



How Does setuid/setgid Work?

• In some cases, you may need to run a program with root priviliges.
• For example, the "passwd" command allows users to change their
password.

• This requires changing the "/etc/shadow" file, however, only the root user
has write access to "/etc/shadow".

• Normal users can execute the passwd command to change their own
password without "sudo(1)" access for root user permissions.

• This is because the permissions for the "passwd" command contains an s
where you’d expect x for the file owner’s permissions.

• This s tells us that the setuid bit is set and the command will be executed with
the command owner’s permissions without requiring "sudo" access.

OPS102 W4C1 - File System Security: Permissions 13/17



The Sticky Bit

• The sticky bit in Linux is a special permission that can be set on directories.
• When the sticky bit is enabled on a directory, only the owner of a file within
that directory or the root user can delete or rename the file.

• Other users, even if they have write permissions on the directory, cannot
remove or modify files owned by other users.

• The main purpose of the sticky bit is to ensure the privacy and security of
files in shared directories.

• Since "/tmp" is mode 1777, any user can create files/directories there, but
can’t delete anything owned by someone else.

OPS102 W4C1 - File System Security: Permissions 14/17



Default Permissions and Umask



umask

• The umask is an attribute of a process, and is inherited by child processes.
• Normally set at shell start-up, and applies to all commands run.

• A process’s umask value “masks off” (disables) permission bits for any files or
directories created by the process. default permissions for newly created
files and directories

• The base permissions for directories are 777 and for files 666
• i.e. The default is pass-through for directories, but non-executable for files.

• For example: a umask value of 026 means:
• A newly created directory gets mode 777 – 026 or 751 or rwxr-x--x
• A newly created file gets mode 666 – 026 or 640 or rw-r-----

OPS102 W4C1 - File System Security: Permissions 15/17



File and Folder Permissions in
Windows



File and Folder Permissions in Windows

• In windows OS, you can access the
permissions from the properties of
any file or folder.

• The security tab in the properties
shows the current set of
permissions.

• A user with appropriate privileges
can modify the permissions.

OPS102 W4C1 - File System Security: Permissions 16/17



Summary

• More than one user? Need a permission mechanism.
• Simple permissions are often sufficient.
• Permissions, viewing, changing (symbolic vs octal)
• Special bits – setuid, setuid, stick
• Default permissions and umask
• Windows quick mention

OPS102 W4C1 - File System Security: Permissions 17/17


	Introduction to Permissions
	Viewing Permissions
	Setting Permissions
	Special Permission Bits
	Default Permissions and Umask
	File and Folder Permissions in Windows

