
Input/Output Redirection and Pipes
OPS102 Week 4 Class 2

Tiayyba Riaz/John Sellens
September 23, 2024

Seneca Polytechnic



Outline

The Unix Philosophy

Input/Output Redirection

Connecting Commands with Pipes

OPS102 W4C2 - Input/Output Redirection and Pipes 1/11



The Unix Philosophy



The Unix Philosophy

• The early developers of Unix established a “philosophy”, as a result of their
brilliance and experience.

• In his book “A Quarter-Century of UNIX” (1994), Peter H. Salus summarized the
Unix Philosophy as

• Write programs that do one thing and do it well.
• Write programs to work together.
• Write programs to handle text streams, because that is a universal interface.

• Many of the tools and commands we have seen so far reflect these ideas.
• Many Linux/Unix commands act as “filters” – they read input, process or
modify it, and send it along as output.

• https://en.wikipedia.org/wiki/Unix_philosophy

OPS102 W4C2 - Input/Output Redirection and Pipes 2/11

https://en.wikipedia.org/wiki/Unix_philosophy


Input/Output Redirection



Input/Output Redirection

• We give commands to the shell via the terminal and the shell executes them.
• But commands often need input and produce output.
• Usually input comes from files, and output goes to the terminal.
• Commands can also give errors if something goes wrong, these error
messages are also, normally, printed on screen.

• Commands can also get their input from other commands or the terminal.
• Output and error messages can be sent (“redirected”) to files (or other
commands) instead of displaying them on the terminal.

OPS102 W4C2 - Input/Output Redirection and Pipes 3/11



Standard Input, Output, and Error

• Normally, every program or command is invoked with three open file
descriptors, which often default to being attached to the terminal:

• 0 – the standard input
• 1 – the standard output
• 2 – the standard error output

• C programmers will recognize these as stdin, stdout, and stderr from
"stdio.h".

• The shell provides convenient ways to attach these file descriptors to files,
devices, or other commands.

OPS102 W4C2 - Input/Output Redirection and Pipes 4/11



Input/Output Redirection and the Shell

• The shell uses special characters and syntax on command lines to implement
I/O redirection.

• Use less than < before a filename to read input from that file.
• Use greater than > before a filename to write output to that file.

• I remember > as it looks like an arrow pointing into a file.
• If the file already exists, it is emptied before writing, otherwise it is created.

• Use two greater thans >> before a filename to append (add to the end of)
output to that file.

• e.g. "tr '[A-Z]' '[a-z]' <mixedcase.txt >lowercase.txt"
• I/O redirection can be used with any command, though it’s less useful with
some commands e.g. "date" doesn’t read input.

OPS102 W4C2 - Input/Output Redirection and Pipes 5/11



Redirecting Error Output

• Remember that there is also the standard error output on file descriptor 2.
• "gcc -o myprog myprog.c 2>gccerrors.txt"
• "gcc -o myprog myprog.c 2>>allerrors.txt"
• "./myprog >myoutput.txt 2>&1"

• The "2>&1" means send file descriptor 2 output (errors) wherever file
descriptor 1 output is currently going.

OPS102 W4C2 - Input/Output Redirection and Pipes 6/11



Input/Output and "/dev/null"

• Remember that the "/dev" directory contains special device files.
• "/dev/null" is a place you can read nothing from, or write anything to.

• It’s also called the “bitbucket”, or the “black hole”.

• "/dev/null" is handy if you don’t want to give any input to a command, or
you want to ignore any output (or errors).

• e.g. "grep Linux * 2>/dev/null" looks for “Linux” in all matching files,
but throws away any error messages (say, if you don’t have read permission
on some files).

OPS102 W4C2 - Input/Output Redirection and Pipes 7/11



Connecting Commands with Pipes



Inter Process Communication: Pipes

• What if we want the put the output of a command to work as the input of
another command?

• Commands can send their standard output directly to the standard input of
other commands.

• Two or more simple commands can be combined to form a more powerful
command sequence.

• No intermediate files need to be created.
• This is the magic of pipes!

OPS102 W4C2 - Input/Output Redirection and Pipes 8/11



How To Use Pipes

• We make a connection (pipe) between two commands by using the "|" pipe
operator between commands.

• Many commands can be piped together especially Linux filter commands
such as "sort", "cut", "more", "less", etc.

• The shell uses the pipe(2) system call to connect the necessary file
descriptors before running commands.

• As usual, each command processes its input and generates its output.
• Commands must be chained in a specific order, depending on what you wish
to accomplish (obviously).

• Example pipe use: "ls -al | sort -nk 5"
• Also works on Windows command prompt similarly to Linux: "dir | sort"
• https://en.wikipedia.org/wiki/Pipeline_(Unix)

OPS102 W4C2 - Input/Output Redirection and Pipes 9/11

https://en.wikipedia.org/wiki/Pipeline_(Unix)


Advantages of Using Pipes

• The most obvious advantage is convenience for the user.
• It’s a simple quick syntax, and very powerful and useful.

• It also means that intermediate output does not have to be written to and
read from temporary files.

• Disk input/output is one of the slowest parts of computing.
• With multi-processor machines, more than one command can actually be
running at the same time.

• Parallel, rather than serial, processing usually reduces the time taken to
complete a task.

OPS102 W4C2 - Input/Output Redirection and Pipes 10/11



Summary

• The Unix Philosophy
• Standard Input, Output, and Error
• The shell lets you redirect I/O
• Pipes are fun!

OPS102 W4C2 - Input/Output Redirection and Pipes 11/11


	The Unix Philosophy
	Input/Output Redirection
	Connecting Commands with Pipes

