
Bash Scripting
OPS102 Week 8 Class 1

Chris Tyler/John Sellens
July 2, 2024

Seneca Polytechnic

Outline

Script Basics

Bash Details

Summary

OPS102 W8C1 - Bash Scripting 1/27

Script Basics

What is a Script?

• A shell script is a simple computer program which is interpreted by an
operating system shell.

• Scripts are used to automate procedures that could be manually performed
from the command line.

OPS102 W8C1 - Bash Scripting 2/27

How will scripts save hours of my life?

If you’re developing a computer program which requires 25 steps to build and test,
and you’re going to iterate through the build and test process 100 times, you can:

• Perform 2500 steps manually – a lot of work, and error-prone; or
• Write a script containing those 25 steps and then execute it each time you
want to build and test your program (100 times)

• You can even set things up so the script is executed automatically when
certain conditions are met – such as saving a change to your source code!

OPS102 W8C1 - Bash Scripting 3/27

Basic Requirements for Shell Scripts

1. Create a text file containing shell commands.
2. Tell the operating system which shell to use to execute the commands.
3. Ensure that the script file has the appropriate permissions.

OPS102 W8C1 - Bash Scripting 4/27

1. Create a file containing shell commands

• Use any text editor
• Use the same commands that you would type at the command-line
• Save the file

OPS102 W8C1 - Bash Scripting 5/27

2. Tell the operating system which shell to use

• Add a “shebang” line to the start of the file
• First character is a sharp: #
• Second character is a bang: !
• The rest of the line is the absolute pathname of the shell / interpreter
• #!/bin/bash

• The name “shebang” comes from “sharp” and “bang”
• Also known as a “hashbang” line

• The #! characters form a “magic number” which the kernel notices
• And runs the command: /bin/bash name-of-file

• The # character causes the shell to interpret the line as a comment, and
ignore it

OPS102 W8C1 - Bash Scripting 6/27

3. Set the correct permissions on the file

• The kernel needs execute permission to analyze the shebang line and
execute the correct shell/interpreter.

• The shell needs read permission to read the contents of the file.
• Set these permissions with the chmod command for any user(s) that should
be able to execute the file:
chmod u+rx scriptname

OPS102 W8C1 - Bash Scripting 7/27

Demo: Basic scripts

• Let’s write some simple scripts using commands that we know
• Scripts act like any other executable file, so we can type the script name as a
command. However, unless the script is in a directory that is normally
searched by the operating system, it won’t be able to find it. We’ll talk about
how to adjust this later, but for now, we can use a pathname that includes a
slash to execute a script we’ve written:
./scriptname

OPS102 W8C1 - Bash Scripting 8/27

Bash Details

Setting Variables

• To set a variable:
VARIABLE=VALUE

• Variable names start with a letter and can contain letters, numbers, and
underscores.

• Case matters! A and a are different variables.
• Don’t put spaces on either side of the equal sign.

• Unlike assignments in most other languages.

OPS102 W8C1 - Bash Scripting 9/27

Accessing Variables

• To use a variable value in a command, precede it with a dollar sign:
$VARIABLE

• You can use a variable anywhere in a command:
• Arguments
• Command name

• The value of the variable is substituted into the command.

OPS102 W8C1 - Bash Scripting 10/27

Variables: A Simple Example

$ what=World
$ echo Hello $what
Hello World

OPS102 W8C1 - Bash Scripting 11/27

Word Splitting / Tokenization

• The shell uses certain separator characters (whitespace by default) to split
commands into words.

• For example, spaces are used to break this line into a three parts (or tokens):
a command and two arguments
$ ls –l filename

• But this means that arguments, such as filenames, that contain spaces will
be interpreted as multiple arguments:
$ ls –l file one

OPS102 W8C1 - Bash Scripting 12/27

Preventing Word Splitting with Quoting

• Quoting prevents words from being split.
• It’s needed whenever we’re dealing with text that contains separators (such
as space or tabs).

• You can also use quoting to hide other special characters from the shell,
such as the file globbing characters: * ? []

OPS102 W8C1 - Bash Scripting 13/27

Types of Quotes: Single vs Double

• Single or double quote characters may be used to quote strings:
B='Hello World'
A="Hello World"

• When double quotes are used, variables will be expanded inside the quotes.
• When single quotes are used, variables will not be expanded inside the
quotes.

OPS102 W8C1 - Bash Scripting 14/27

Quoting: Examples

$ what="World"

$ echo "Hello $what"
Hello World

$ echo 'Hello $what'
Hello $what

OPS102 W8C1 - Bash Scripting 15/27

Quoting: More Examples

$ what="World"
$ message="Hello $what"
$ what="There"
$ echo $message
Hello World
$ echo "$message"
Hello World
$ echo '$message'
Hello $message

Note that the variable substitution of $what happened during the assignment to
message and not when message was used.

OPS102 W8C1 - Bash Scripting 16/27

Quoting: One argument vs. Multiple

When a string contains a separator such as a space, and it is unquoted, the shell
will interpret it as multiple words (tokens). When used as an argument, this will
be interpreted as multiple arguments:

$ touch "new file"
$ ls -l new file
ls: cannot access 'new': No such file or directory
ls: cannot access 'file': No such file or directory
$ ls -l "new file"
-rw-r--r--. 1 chris chris 0 Jun 18 22:47 new file

OPS102 W8C1 - Bash Scripting 17/27

Quoting: One argument vs. Multiple

You should always double quote variables that may contain a space in their
value when using them as command arguments.

• There are one or two slightly obscure exceptions to this rule.

This is especially true for filenames -– you never know when a user is going to put
a space (or a special character) in a filename! Many scripts work fine with opaque
filenames (those containing no whitespace) but fail with non-opaque filenames.

OPS102 W8C1 - Bash Scripting 18/27

Quoting: Backslashes (Escaping)

A backslash character outside of quotes or inside double quotes instructs the
shell to ignore any special meaning that the following character may have.

$ touch "new file"
$ ls -l new file
-rw-r--r--. 1 chris chris 0 Jun 18 22:49 new file

$ echo "This string contains a \"quoted\" string"
This string contains a "quoted" string

$ A=Testing
$ echo " \$A"

$A

OPS102 W8C1 - Bash Scripting 19/27

Shell Variables vs Environment Variables

• By default, a variable is local to the shell in which it is running.
• Somewhat similar to local variables in C functions.

• You can export variables to make them environment variables. That means
that they are passed to programs (child processes) that are executed by the
shell.

• Environment variables are commonly used to pass configuration information
to programs and to configure how programs operate.

• Environment variables are used by all processes, not just the shell!
• By convention, we use UPPERCASE to name environment variables.

OPS102 W8C1 - Bash Scripting 20/27

Common Environment Variables

Environment Variable Purpose
EDITOR Name of the default text editor (often

/usr/bin/nano)
PATH A colon-separated list of directories that will be

searched when looking for a command
LANG The default language – used to select message

translations as well as number, currency, date,
and calendar formats.

HOME The user’s home directory -– used for relative-to-home
pathnames.

OPS102 W8C1 - Bash Scripting 21/27

Viewing and Creating Environment Variables

• See all current environment variables and their values:
$ printenv | less

• The set command shows all variables.

• Create an environment variable with export:
$ X=500
$ export X
$ export Y=123

OPS102 W8C1 - Bash Scripting 22/27

Example: PATH Environment Variable

$ cat showdate
#!/usr/bin/bash
date
$./showdate
Sun 18 Jun 2023 11:20:18 PM EDT
$ showdate
bash: showdate: command not found
$ echo $PATH
/home/chris/bin:/usr/local/bin:/usr/bin:/bin
$ PATH="$PATH:."
$ showdate
Sun 18 Jun 2023 11:20:45 PM EDT

Note: Having . in your $PATH is a security risk. But is the default on matrix.
OPS102 W8C1 - Bash Scripting 23/27

Example: LANG Environment Variable

$ echo $LANG
en_CA.UTF-8
$ date
Sun 18 Jun 2034 11:32:27 PM EDT
$ foobarbaz
bash: foobarbaz: command not found
$ LANG=fr_CA.UTF-8
$ date
ven nov 3 01:45:08 EDT 2023
$ foobarbaz
bash: foobarbaz: commande introuvable

See also the LC_* environment variables:
https://unix.stackexchange.com/questions/87745/what-does-lc-all-c-do

OPS102 W8C1 - Bash Scripting 24/27

https://unix.stackexchange.com/questions/87745/what-does-lc-all-c-do

Example: HOME Environment Variable

$ echo $HOME
/home/chris
$ echo ~
/home/chris
$ HOME=/
$ echo ~
/
$ ls ~
afs bin boot dev etc home lib lib64 lost+found
media mnt opt proc root run sbin srv sys tmp
usr var

Note: changing $HOME can cause you problems.

OPS102 W8C1 - Bash Scripting 25/27

Example: PS1 Local Shell Variable

Change the shell prompt:

$ PS1="Enter a command: "
Enter a command: date
Sun 18 Jun 2023 11:17:14 PM EDT
Enter a command: PS1="[\u@\h \W]\$ "
[chris@toronto ~]$ PS1="$ "
$

Note: PS1 looks like an environment varible because it’s uppercase, but it isn’t.

OPS102 W8C1 - Bash Scripting 26/27

Summary

Summary

• Scripts are handy, and easy to create – yay text files!
• The “shebang” line is a “magic number” that guides the kernel on how to
execute a script.

• Variables are handy – local and environment.
• Quoting and backslash escaping hide special characters and whitespace.

OPS102 W8C1 - Bash Scripting 27/27

	Script Basics
	Bash Details
	Summary

