Bash Scripting Part 2
OPS102 Week 8 Class 2

Chris Tyler/John Sellens
July 2, 2024

Seneca Polytechnic

Recap From Last Class

The Read Command

Command Capture (Substitution)
Shell Arithmetic

Exit Status and Conditionals

Summary

OPS102 W8C2 - Bash Scripting Part 2 1/19

Recap From Last Class

Recap From Last Class

- Scripts are handy, and easy to create - yay text files!

- The “shebang” line is a “magic number” that guides the kernel on how to
execute a script.

- Variables are handy - local and environment.

- Quoting and backslash escaping hide special characters and whitespace.

OPS102 W8C2 - Bash Scripting Part 2 2/19

The Read Command

Reading a Variable Value from Stdin: read

- You can read from standard input into a variable with the read command:
read variable

- For example:

$ read course
Seneca 0OPS102
$ echo $course
Seneca 0PS102

- If you give read multiple variables, it will tokenize the input.

$ read first last restofline
Chris Tyler likes using Linux
$ echo $restofline

likes using Linux

OPS102 W8C2 - Bash Scripting Part 2 3/19

Using read with a Prompt String

- You can display a message to the user when reading from stdin by using the
—p (prompt) option to read:
$ read -p "Please enter a course code: " ccode
Please enter a course code: OPS102
$ echo "The selected course is $ccode"
The selected course is 0PS102
- Of course, you can also use a separate echo command instead!
- Which has a -n option to suppress the trailing newline.

OPS102 W8C2 - Bash Scripting Part 2 4119

Demo: Variables in a Script

#!/bin/bash

read -p "Please enter your name: " name
echo "Pleased to meet you, $name"
read -p "Please enter a filename: " file

echo "Saving your name into the file..."
echo "yourname=$name" >>$file
echo "Done."

OPS102 W8C2 - Bash Scripting Part 2 5/19

Command Capture (Substitution)

Command Capture (Substitution)

You can capture the standard output (stdout) of a command as a string using the
notation $(command)

$ echo "The current date and time is: $(date)"

The current date and time is: Mon 19 Jun 2034 12:02:11 AM EDT
$ files="$(1ls|wc -1)"

$ echo "There are $files files in the current directory $(pwd)"
There are 2938 files in the current directory /bin

It's also called “command substitution” since the output of the command is
substituted for what was on the command line.

OPS102 W8C2 - Bash Scripting Part 2 6/19

Command Capture: Avoid Backticks

You may see old scripts that use backticks (reverse single quotes) for command
capture:

$ files="1s"

Don’t do this! This is an archaic syntax which is deprecated. Some fonts make it
hard to distinguish between backticks and single quotes, and nesting backticks is
difficult.

Unless you're writing code that needs to be portable to non-bash systems.

OPS102 W8C2 - Bash Scripting Part 2 7/19

Shell Arithmetic

Arithmetic!

- Bash can do integer arithmetic

- To evaluate a arithmetic expression and return a value, use $(())

- To evaluate a arithmetic expression without returning a value, use (())

- Dollar-sign prefixes for variables are not required inside $(()) or (())

$ echo $((axb)) $ ((a++))

1200 $ echo $a

$ a=100 $ echo $((b++)) 101

$ b=12 12 $ ((c=axb=*2))
$ echo $b $ echo "The answer is $c"
13 The answer is 2626

OPS102 W8C2 - Bash Scripting Part 2 8/19

Old Style Arithmetic

- The expr command evalutes expressions.
- Can be used in command substitution (or output redirection).
- Less convenient than bash arithmetic, but more portable.

OPS102 W8C2 - Bash Scripting Part 2 9/19

Exit Status and Conditionals

Exit Status

- When a program runs, it exits with a numeric value. This goes by any of
several names:

- exit status, exit code, status code, error code

- Usually, an exit status of zero means that no errors were encountered, and a
non-zero status means that something went wrong.
- Alternately, program authors can use this value as they see fit, so the exit
status may indicate something else, like the number of data items processed.
- In C programs the exit status is from exit(): exit(3);
- A shell script exits with the exit command: exit 0
- Integer argument optional, defaults to 0

OPS102 W8C2 - Bash Scripting Part 2 10/19

Exit Status: S?

The special variable $? can be used to find out the exit status of the last
command executed:

$ 1s /foo/bar/baz

1s: cannot access '/foo/bar/baz': No such file or directory
$ echo $?

2

$ 1s /usr/bin/bash
/usr/bin/bash

$ echo $?

0

OPS102 W8C2 - Bash Scripting Part 2 1/19

Exit Status: Why do we care?

- In a script you may want to notice if a command fails.
- And the exit statuses of commands are the key to conditional logic (if
statements) and looping (for/while/until) in bash scripts.
- A C program exits by calling exit(0);
- A shell script exits by running exit 0
- Or falling off the end of the script

OPS102 W8C2 - Bash Scripting Part 2 12/19

Conditional logic: if / then / elif / else / fi

The if command takes two or more lists of commands, and uses the result of one
list to control the execution of the other.

if cmdlistl #t if the exit status 1s 0
then

cmdlist2 # then run these commands
fi

OPS102 W8C2 - Bash Scripting Part 2 13/19

Conditional logic: if / then / elif / else / fi

if grep —q "OPS102" testfile

then
echo "The course is mentioned in the file"

fi

The shell runs the grep command, and if the string is found in the file, grep exits
0, which indicates “true” and so the command(s) in the “then” of the “if” are run.

OPS102 W8C2 - Bash Scripting Part 2 14/19

Conditional logic: if / then / elif / else / fi

There are else and elif (else-if) keywords too:

if cmdlistil # If the exit status is success
then

cmdlist2 # then run this
elif cmdlist3 # else 1f this exits with success
then

cmdlist4 # then do this
else

cmdlist5 # otherwise do this.
fi

OPS102 W8C2 - Bash Scripting Part 2 15/19

Conditional logic: if / then / elif / else / fi

if grep —q "OPS102" testfile
then
echo "The course is mentioned in the file"
else
echo "The file does not mention OPS102"
fi

OPS102 W8C2 - Bash Scripting Part 2 16/19

Conditional logic: if / then / elif / else / fi

if grep —q "OPS102" testfile
then

echo "The course is mentioned in the file"
elif grep —q "ULI101" testfile

then

echo "The old ULI101 course is in the file"
else

echo "The file does not mention OPS102 or ULI101"
fi

OPS102 W8C2 - Bash Scripting Part 2 17/19

More on if Statements

- The command lists can be one of more commands, separated by newlines or
semi-colons.

- Common formatting style:

if grep —q "OPS102" testfile ; then

echo "The course is mentioned in the file"
elif grep —q "ULI101" testfile ; then

echo "The old ULI101 course is in the file"
else

echo "The file does not mention OPS102 or ULI101"
fi

OPS102 W8C2 - Bash Scripting Part 2 18/19

Summary

- Reading input

- Command capture / command substitution
- Integer arithmetic

- Exit status

- if statements
- Next class?
- test, parameters, while, until, for

OPS102 W8C2 - Bash Scripting Part 2 19/19

	Recap From Last Class
	The Read Command
	Command Capture (Substitution)
	Shell Arithmetic
	Exit Status and Conditionals
	Summary

