
Bash Scripting Part 3
OPS102 Week 9 Class 1

Chris Tyler/John Sellens
July 11, 2024

Seneca Polytechnic

Outline

Recap From Last Class

The Test Command

Summary

OPS102 W9C1 - Bash Scripting Part 3 1/17

Recap From Last Class

Recap From Last Class

• Reading input
• Command capture / command substitution
• Integer arithmetic
• Exit status
• if statements

OPS102 W9C1 - Bash Scripting Part 3 2/17

The Test Command

The test Command

• The test command (which is a bash builtin) can perform a variety of
comparisons and tests.

• It returns success (0 exit status) if the test succeeds, or non-zero otherwise.
• For example:

test "$NAME" == "Chris"
• test is very often used with if/then/fi:

if test "$name" == "Chris"
then
superpowers="Yes"

fi

OPS102 W9C1 - Bash Scripting Part 3 3/17

The test command and [[]]

• The double square bracket is an aliase for the test command. When you
use this alias, an extra argument with the closing square brackets is required:
if [["$name" == "Chris"]]
then
superpowers="Yes"

fi
• Single square bracket is supported in all Posix shells; double square bracket
provides an improved version of the test command in Bash.

OPS102 W9C1 - Bash Scripting Part 3 4/17

/usr/bin/test and []

• Besides the bash builtin test (or [[]]), there are two other
Posix-compatible versions of test available:

• External version of test: /usr/bin/test or /usr/bin/[
• Shell builtin: [

• These versions of test have a slightly different syntax. For simplicity, we
won’t be using them in this course. Refer to the corresponding man pages
(test(1) or bash(1)) for additional information if you’re interested.

OPS102 W9C1 - Bash Scripting Part 3 5/17

Tests 1: Filesystem entries (Files/Dirs/Links)

• This first group of tests deals with filesystem entries, such as files and
directories. Each test expects one argument, a pathname:

• -f pathname – is pathname a regular file?
• -d pathname – is pathname a directory?
• -l pathname – is pathname a symbolic link?

• These tests check if the pathname exists and is of a certain type. Also:
• -e pathname – does pathname exist?
• -s pathname – does pathname exist and have a size greater than zero?

OPS102 W9C1 - Bash Scripting Part 3 6/17

Tests 2: File Permissions

• The next group of tests deals with pathname permissions.
• Each test expects one argument, a pathname:

• -r pathname – is pathname readable?
• -w pathname – is pathname writable?
• -x pathname – is pathname executable?

• These tests check if the pathname exists and has that permision for the
current user.

OPS102 W9C1 - Bash Scripting Part 3 7/17

Tests 3: Strings

• These tests accept two string arguments, which are compared:
• string1 == string2 – do strings match?
• string1 != string2 – do strings not match?
• string1 > string2 – is string1 greater than (sorts after) string2?
• string1 < string2 – is string1 less than (sorts before) string2?

• With test, you will usually want to quote the strings and < and >.
• For the == and != operators, string2 can be a glob pattern.
• Also:

• -z string1 – is string1 length equal to 0?
• -n string1 – is string1 length greater than 0?

OPS102 W9C1 - Bash Scripting Part 3 8/17

Tests 4: Numeric Comparisons

• These tests accept two integer arguments, which are compared:
• integer1 -eq integer2 – are the integers equal?
• integer1 -ne integer2 – are the integers not equal?
• integer1 -gt integer2 – is integer1 greater than integer2?
• integer1 -ge integer2 – is integer1 greater than or equal to integer 2?
• integer1 -lt integer2 – is integer1 less than integer2?
• integer1 -le integer2 – is integer1 less than or equal to integer2?

• These are the numeric, rather than string, comparison operators.

OPS102 W9C1 - Bash Scripting Part 3 9/17

All the Rest of the Tests

• These are just the most commonly-used tests.
• See the bash(1) manpage for other tests that might be useful.

OPS102 W9C1 - Bash Scripting Part 3 10/17

Negating and Combining Tests

• You can negate (invert) a test with the ! operator:
[[! -f "$F"]] # check that $F isn't a regular file

• You can combine tests using the && (logical and) and || (logical or)
operators:
[[$A –eq $B && $C –eq $D]]
[[$X –eq $Y || $X –eq $Z]]

• This should, of course, look familiar! Just like C!

OPS102 W9C1 - Bash Scripting Part 3 11/17

Using Tests

• Remember to quote arguments which include whitespace separators.
• Be careful with the < and > comparison operators – if you have a syntax error,
you may accidentally redirect input or output.

• Which in the case of > may truncate and destroy a file!

OPS102 W9C1 - Bash Scripting Part 3 12/17

Examples of using test: Strings

#!/bin/bash
architecture="$(uname -m)" # uname gets system information

if [["$architecture" == "x86_64"]]
then

echo "Your computer architecture is Intel/AMD x86_64."
elif [["$architecture" == "aarch64"]]
then

echo "Your computer uses the 64-bit Arm architecture."
else

echo "Your computer uses an unrecognized architecture."
fi

exit 0
OPS102 W9C1 - Bash Scripting Part 3 13/17

Examples of using test: Integer Numbers

#!/bin/bash
read -p "Enter the customer's date of birth: " birth
Calculate the time in seconds that the customer turns/tuned 19
ageseconds="$(date -d "$birth + 19 years" +%s)"
See if the current time in seconds is greater than that
now="$(date +%s)"

Tell the user if the customer is old enough to be served alcohol
if [["$ageseconds" -lt "$now"]]; then

echo "The customer is of legal drinking age in Ontario."
else

echo "The customer is too young to legally drink in Ontario."
fi
exit 0

OPS102 W9C1 - Bash Scripting Part 3 14/17

Examples of using test: Integer Numbers

#!/bin/bash

coinflip=$((RANDOM % 2))

if [["$coinflip" == 0]]; then
echo "Heads!"

else
echo "Tails!"

fi

exit "$coinflip"

OPS102 W9C1 - Bash Scripting Part 3 15/17

Examples of using test: File and Permissions

#!/bin/bash
read -p "Enter the file to be deleted: " f
if [! -f "$f"]; then

echo "The filename '$f' does not refer to a regular file - skipping."
elif [! -r "$f"]; then

echo "The file '$f' is not readable (by you) - skipping."
else

read -p "Delete the regular file '$f'? (Y/N): " YESNO
if [["$YESNO" == "Y" || "$YESNO" == "y" || "$YESNO" == "Yes"
|| "$YESNO" == "yes" || "$YESNO" == "YES"]]; then
echo "Deleting the file '$f'..."
rm "$f"
echo "...done."

else
echo "Skipping the file '$f' as requested."

fi
fi
exit 0

OPS102 W9C1 - Bash Scripting Part 3 16/17

Summary

Summary

• The test command has many variants.
• And is key to decision making in scripts.
• Exit status is the key.

OPS102 W9C1 - Bash Scripting Part 3 17/17

	Recap From Last Class
	The Test Command
	Summary

