
Bash Scripting Part 4
OPS102 Week 9 Class 2

Chris Tyler/John Sellens
July 11, 2024

Seneca Polytechnic

Outline

Recap From Last Class

Script Parameters

Looping in Bash Scripts

Using Scripts, and Startup Files

Summary

OPS102 W9C2 - Bash Scripting Part 4 1/20

Recap From Last Class

Recap From Last Class

• The "test" command is the best.
• Now, what more can we do?

OPS102 W9C2 - Bash Scripting Part 4 2/20

Script Parameters

Script Parameters

• It’s useful to be able to call a script with positional parameters (arguments).
• These can be accessed within a script as $0, $1, $2, $3, and so forth.
• $0 is the name of the script itself.
• $# is the number of positional parameters.
• The shift command gets rid of the first parameter ($1) and shifts every
parameter to a lower number.

OPS102 W9C2 - Bash Scripting Part 4 3/20

Script Parameters

$ cat params
#!/usr/bin/bash
echo "Number of parameters: $#"
echo "Parameter 1: $1"
echo "Parameter 2: $2"
echo "Parameter 3: $3"
echo "Parameter 4: $4"

$./params red green blue
Number of parameters: 3
Parameter 1: red
Parameter 2: green
Parameter 3: blue
Parameter 4:

OPS102 W9C2 - Bash Scripting Part 4 4/20

Script Parameters and shift

$ cat params
#!/usr/bin/bash
echo "Number of parameters: $#"
shift
echo "Parameter 1: $1"
echo "Parameter 2: $2"
echo "Parameter 3: $3"
echo "Parameter 4: $4"
$./params red green blue
Number of parameters: 3
Parameter 1: green
Parameter 2: blue
Parameter 3:
Parameter 4:

OPS102 W9C2 - Bash Scripting Part 4 5/20

Script Parameters in Totality

• $* and $@ both return ALL of the parameters.
• When quoting:

• "$*" returns all the parameters as a single string –- not usually useful.
• "$@" returns each parameter as a separate string –- usually what you want.

OPS102 W9C2 - Bash Scripting Part 4 6/20

Script Parameters in Totality Example

$ cat params3
#!/usr/bin/bash
ls –l "$*" # gives one file argument to ls
echo ---
ls –l "$@" # gives separate file arguments to ls
$ touch a b c
$./params3 a b c
ls: cannot access 'a b c': No such file or directory

-rwxr-xr-x. 1 chris chris 463 Jun 21 11:55 a
-rwxr-xr-x. 1 chris chris 121 Jun 21 11:55 b
-rwxr-xr-x. 1 chris chris 532 Jun 21 11:55 c

OPS102 W9C2 - Bash Scripting Part 4 7/20

Script Parameters Another Example

• Let’s look at a simple bash script to check that the user has provided 2
arguments.

• In this script, we’re also including the name of the script in the error message,
sending the error message to stderr, and exiting with a unique error code.

OPS102 W9C2 - Bash Scripting Part 4 8/20

Script Parameters Another Example

$ cat paramcheck
#!/usr/bin/bash
if [["$#" -ne 2]]
then
echo "$(basename $0): Error: 2 arguments expected" >&2
exit 1

fi
exit 0

$./paramcheck foo bar
$./paramcheck foo
paramcheck: Error: 2 arguments expected

OPS102 W9C2 - Bash Scripting Part 4 9/20

Looping in Bash Scripts

Looping in Bash Scripts

There are four types of loops available in bash:

for variable in values ; do ... ; done

for ((setup; control; iteration)) ; do ... ; done

while cmdlist ; do ... ; done

until cmdlist ; do ... ; done

OPS102 W9C2 - Bash Scripting Part 4 10/20

Looping: for variable in values

• This type of loop accepts a list of values. The first value is assigned to the
variable and the loop is executed, and then the process is repeated with each
remaining value.

• The values could be:
• A list of constants:

for CITY in Toronto Vaughan Oshawa ; do ... ; done
• Parameters:

for X in "$@" ; do ... ; done
• A file globbing pattern:

for FILE in *.jpg ; do ... ; done
• Or anything else that consists of one or more values as separate words.
• Or even an empty list of values.

OPS102 W9C2 - Bash Scripting Part 4 11/20

Looping: for variable in values

$ cat tidyup
#!/usr/bin/bash
for FILE in *.backup *.bck ; do

if [[-r "$FILE"]] ; then
read -p "Delete file '$FILE' (Y/N)? " YESNO
if [["$YESNO" == "y" || "$YESNO" == "Y"]] ; then
echo "Deleting file '$FILE'"
rm "$FILE"

else
echo "'$FILE' was not deleted."

fi
fi

done

OPS102 W9C2 - Bash Scripting Part 4 12/20

Looping: for variable in values

$ touch oldfile.backup source.bck
$./tidyup
Delete file 'oldfile.backup' (Y/N)? N
'oldfile.backup' was not deleted.
Delete file 'source.bck' (Y/N)? Y
Deleting file 'source.bck'

OPS102 W9C2 - Bash Scripting Part 4 13/20

Looping: for ((setup; control; iteration))

• This type of loop works pretty much the same as a C-style for loop.
• Example:

for ((i=0; i<10; i++))
do
echo "$i"

done

• Remember the double-parenthesis! As with arithmetic!
• It’s “arithmetic context” inside the (())

OPS102 W9C2 - Bash Scripting Part 4 14/20

Looping: while cmdlist; do . . . ; done

• This type of loop executes as long as the cmdlist returns success
• i.e. while exitstatus == 0

• Example:
while [["$(who | wc –l)" -gt 1]]
do
echo "There are other users logged in:"
who
sleep 10

done

OPS102 W9C2 - Bash Scripting Part 4 15/20

Looping: until cmdlist; do . . . ; done

• This type of loop executes as long as the cmdlist does not return success
• i.e. while exitstatus != 0

• Example:
until [["$(date +%u)" == "6"]]
do
echo "Waiting until Saturday..."
sleep $((24 * 60 * 60)) # sleep for a day

done

• This is effectively “while not”

OPS102 W9C2 - Bash Scripting Part 4 16/20

Using Scripts, and Startup Files

Using Scripts

• Scripts are handy for repetitive or complicated tasks.
• Scripts may also be used to customize your environment on a Linux system.

OPS102 W9C2 - Bash Scripting Part 4 17/20

Bash Startup Scripts

• There are two scripts in your home directory that are executed automatically
by bash. They are both named starting with a period (dot), which causes
them to be “hidden” (not normally displayed by the ls command).

• ∼/.bash_profile -– this script is executed once per login.
• This is a good place to put commands that set up your work environment,
including envars, and source your .bashrc file.

• ∼/.bashrc -– this script is executed whenever a bash process starts (which
may be several times per login session).

• This is the right place to put things such as command aliases (which are not
inherited by child processes).

OPS102 W9C2 - Bash Scripting Part 4 18/20

Startup Scripts – Be Careful!

• A broken ∼/.bash_profile or ∼/.bashrc script may prevent you from
successfully logging in to your account!

• To protect yourself:
• . Test ∼/.bash_profile and ∼/.bashrc scripts while logged in to your
account by explicitly specifying their names. e.g.

$ bash ~/.bash_profile
• If that is successful, stay logged in to your account while initiating a new login
to test the scripts in the login context. For example, if you are logging in
remotely, stay logged in on one ssh session while initiating a new, separate
ssh login session to test the scripts.

OPS102 W9C2 - Bash Scripting Part 4 19/20

Summary

Summary

• Script parameters and looping constructs? More powerful programs!
• Startup sripts let you customize your working environment.
• Scripting is fun!

• For certain values of “fun”.

OPS102 W9C2 - Bash Scripting Part 4 20/20

	Recap From Last Class
	Script Parameters
	Looping in Bash Scripts
	Using Scripts, and Startup Files
	Summary

