Message Queues

UNX511 Week 10 Class 1

John Sellens July 15, 2025

Seneca Polytechnic

Outline

Message Queues

Message Queues

Message Queues

- · Another inter-process communication (IPC) method
- Originated in UNIX System V
- Between cooperating not-necessarily-related processes
- · Queue senders and receivers can be multiples
- · Like files, a queue has an owner and permissions
 - But doesn't appear in the file system
- · Other System V IPC: shared memory, and semaphores
 - · Discussed later in the course
- Some similarities with pipes and FIFOs

msgget() – Create a Message Queue

- · Takes a key and flags, returns message queue identifier
 - · Similar in function to a file descriptor
- · Key is an encoded "pathname" (which seems to not need to exist)
- Flags include permission bits and queue options
- · A message queue has a fixed (but modifiable) capacity
- See msgget(2) and ftok(3) and the code samples
- Will continue to exist until explicitly removed (like FIFOs)

Message Format

- A message is a caller-defined struct (chunk of memory)
- The first long int's worth of space is treated as the message type
 - · Message type can be an ID for processes, workers, types of messages, ...
 - · Or a priority level higher numbers can be treated as lower priority
- The remainder of the memory is free-form
- Messages are sent and received in their entirety
 - No partial sends or receives
- See msgop(2) for msgsnd() and msgrcv()

msgsnd() - Send a Message

- · Takes message queue ID, memory, size, and flags
- If queue would be overfull, msgsnd() blocks until space available
 - Unless the IPC_NOWAIT flag is used
- · Remember that the first "long" is the message type

msgrcv() – Receive a Message

- · Takes message queue ID, memory, size, message type, and flags
 - · Takes a copy of an item in the queue, which is then removed
- If no message available, msgrcv() blocks until one is available
 - · Unless the IPC_NOWAIT flag is used
- Message type determines which message is returned
 - · First message in queue
 - · First message with (or without) specific type
 - · First message with type less than or equal to a threshold
 - · This means: not a very strict queue
 - See the documentation: msgop(2)
- · Fails if you didn't pass a big enough buffer to hold the message

msgctl() – Control a Queue

- · Get or set information about a queue
- · Can delete a queue
- · See msgctl(2)
- See also the command ipcs(1)

Queue Fullness

- · If a queue gets full, processing can be blocked
- · Our examples use threads to try to read from the queue as soon as possible
 - · And keep the queue in the kernel as empty as possible
- That might be overkill in some situations

Message Queue Code Examples

- Let's have a look in unx511_samples
 - https://github.com/jsellens/unx511_samples
- week10_1/1_basic basic message queues
- week10_1/2_nonblocking non-blocking message queues
- week10_1/3_messagetypes different message types
- week10_1/4_complex more complex data loads
- week10_1/5_msgctl retrieve message queue information

Summary

- · Part of the System V IPC family
- There are also POSIX message queues
- · Can be useful for specific purposes
- But a UNIX domain or IP datagram IPC method is much more common
- · There are indications that this is "not the fastest" IPC method