
Threads and Mutexes
UNX511 Week 11 Class 2

John Sellens
July 22, 2025

Seneca Polytechnic

Outline

POSIX Threads

POSIX Mutexes

UNX511 W11C2 - Threads and Mutexes 1/9

POSIX Threads

POSIX Threads

• A thread is a separate execution path in a process
• Which can take advantage of multiple cores/processors

• Provides a way to have multiple tasks in one program, sharing data
• Without needed to write and manage a scheduling loop

• We have seen threads used for reading from a message queue etc
• e.g. the week 10 examples

• Threads share heap memory (basically globals) but not stack memory
(basically function local variables)

• Good overview from Backblaze: What’s the Diff: Programs, Processes, and
Threads

• Recall that POSIX is the international UNIX standard

UNX511 W11C2 - Threads and Mutexes 2/9

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Threads Overview

• Create a thread by calling pthread_create(3)
• Pass it the name of a function and an argument
• Thread starts running that function

• Thread continues until it returns from the function, or calls
pthread_exit(3)

• Some other thread (often the original thread) calls pthread_join(3) to
join (merge) the exiting thread with this one (sort of like wait(2))

• Gets return value from function, or pthread_exit() argument

• Also pthread_cancel(3) (ask thread to exit),
pthread_detach(3) (no need to re-join)

• Review sample code: week11_1/1_threads

UNX511 W11C2 - Threads and Mutexes 3/9

POSIX Mutexes

POSIX Mutexes

• mutex – short for Mutual Exclusion
• A locking mechanism within threaded code

• Most commonly used to isolate updates/uses of shared variables
• Turns a block of code into (effectively) an atomic operation
• i.e. Nothing else can make similar changes at the same time

• It’s a cooperative / voluntary mechanism
• Nothing will prevent changing global variables if you don’t use a mutex
• But it’s within a single program, so you can set rules for yourself

• There can be multiple mutexes in a program
• Typically use global pthread_mutex_t variables

• Review sample code: week11_1/2_mutex

UNX511 W11C2 - Threads and Mutexes 4/9

Mutexes Overview

// global va r i ab le
pthread_mutex_t lock_x ;
// t y p i c a l l y in o r i g i n a l thread
pthread_mutex_init (&lock_x , NULL) ;
// in cooperat ing threads
pthread_mutex_lock (&lock_x) ; // acquire lock
pthread_mutex_unlock (&lock_x) ; // re lease lock
// t y p i c a l l y in o r i g i n a l thread
pthread_mutex_destroy (&lock_x) ;

UNX511 W11C2 - Threads and Mutexes 5/9

Deadlocks

• Any time you’ve got multiple processes/threads using locks, there could be a
possibility of “deadlock”

• When two things (locks, resources) are needed at the same time and you don’t
get both

• e.g. Thread 1 gets lock 1, thread 2 gets lock 2 and then tries to get lock 1, and
thread 1 tries to get lock 2

• Deadlock can also happen in multi-step database updates
• In our simple examples, deadlock is unlikely (impossible?)
• Simply having to wait for another thread to release a lock is not deadlock

• Unless the other thread is unable to proceed due to a different lock
• Review sample code: week11_1/3_deadlock

• I think this example is a little contrived

UNX511 W11C2 - Threads and Mutexes 6/9

More Mutex Code Samples

• Let’s have a look in unx511_samples
• https://github.com/jsellens/unx511_samples

• week11_1/4_clientServer – UNIX domain sockets with queue
• week11_1/5_msgServer – INET domain sockets with queue
• week11_1/6_msgPump – message broker / proxy

• See PPT file in week11_1/0_documents

UNX511 W11C2 - Threads and Mutexes 7/9

https://github.com/jsellens/unx511_samples

References

• On Ubuntu, for the posix man pages:
sudo apt install manpages-posix-dev

• https://github-pages.senecapolytechnic.ca/unx511/Week11/
Week11.html

• The Linux Programming Interface book, chapter 30 “Threads: Thread
Synchronization”

UNX511 W11C2 - Threads and Mutexes 8/9

https://github-pages.senecapolytechnic.ca/unx511/Week11/Week11.html
https://github-pages.senecapolytechnic.ca/unx511/Week11/Week11.html
https://github-pages.senecapolytechnic.ca/unx511/The Linux Programming Interface - A Linux and UNIX System Programming Handbook.pdf

Summary

• Threads can be handy when:
• When you have multiple disjoint “tasks” in one program
• When your processing can take advantage of parallelization across
cores/processors

• Mutexes can help keep threads from colliding with each other
• Whether it’s modifying shared data
• Or providing output that you don’t want mixed together
• Or …

UNX511 W11C2 - Threads and Mutexes 9/9

	POSIX Threads
	POSIX Mutexes

