
Libraries, Make and Makefiles
UNX511 Week 2 Class 1

John Sellens
May 13, 2025

Seneca Polytechnic



Outline

Introduction to Libraries

Make and Makefiles

UNX511 W2C1 - Libraries, Make and Makefiles 1/12



Introduction to Libraries



Introduction to Libraries

• Programmers usually use libraries of related code as building blocks
• A library is a collection of (usually) related functions for general use

• For example, and C stdio (standard I/O) library – "printf()" etc.
• The "libm.a" mathematics library provides various math functions
• Lots of common libraries, lots of optional libraries
• Programming projects often have their own libraries

UNX511 W2C1 - Libraries, Make and Makefiles 2/12



Why Libraries?

• A convenient way to share code among projects
• Or organizations

• And to delegate responsibility
• And to define (and enforce) APIs

UNX511 W2C1 - Libraries, Make and Makefiles 3/12



Static vs Shared Libraries

• Libraries were originally static – the library code was copied into your
compliled binary, and your binary was self-contained

• This meant that there were many copies of common code, in many different
commands

• And meant that if a new library version with fixed code was released,
everything had to be recompiled

• And there were typically many copies of the same code in memory, while
different programs were running

• Shared libraries avoid (usually) these problems

UNX511 W2C1 - Libraries, Make and Makefiles 4/12



How Do Shared Libraries Work?

When you run a command built with shared libraries

• The OS searches for the libraries you will need
• Dynamically links the command code with the library functions

• Windows shared libraries are DLLs – dynamically linked libraries

• Only one copy of the shared library code needs to be in memory for running
commands (typically)

• New versions of libraries are usually backwards compatible, and are
immediately available to previously compiled commands

UNX511 W2C1 - Libraries, Make and Makefiles 5/12



Downsides of Shared Libraries

• Your command isn’t self-contained – it may require other things to run
• I think the go language tends to prefer static linking

• New library versions could potentially break existing code
• Though this rarely happens these days

• Different programs could require different versions of libraries, and it may
not be possible to have more than one at once

• There was a time when “Windows DLL hell” was a concern

UNX511 W2C1 - Libraries, Make and Makefiles 6/12



Shared Libraries in Linux

• C (and C++) programs in Linux typically use shared libraries
• Linux allows different versions of shared libraries to co-exist
• Programs can be compiled “statically” if desired/needed

UNX511 W2C1 - Libraries, Make and Makefiles 7/12



Library Tools in Linux

• ar creates and manages static libraries
• nm tells you what names are defined in a library (or object file)
• ldd tells you what shared libraries a command needs
• ldconfig is a system command to manage shared library searching
• The LD_LIBRARY_PATH environment variable provides a search path for
shared libraries

UNX511 W2C1 - Libraries, Make and Makefiles 8/12



Make and Makefiles



The Make Command

• make is a tool for building programs and projects
• It uses file modification times
• And a set of file relationships and build commands (a "Makefile")
• To build your program/project up to date in the most effcient way
• From the early UNIX days – Stuart Feldman, Bell Labs, 1976
https://en.wikipedia.org/wiki/Make_(software)

• You can use make to run other command sets, if you can define file
modification time rules for building

• The GNU make variant adds more features and functionality

UNX511 W2C1 - Libraries, Make and Makefiles 9/12

https://en.wikipedia.org/wiki/Make_(software)


Makefile Syntax

• A Makefile is a text file, typically in the same directory as your code
• The file name is (usually) capitalized so it appears near the start of ls output

• It defines target / dependency relationships
• And build commands

• Careful: Build commands must be indented with a tab character, not leading
spaces

• And provides and allows for variables

UNX511 W2C1 - Libraries, Make and Makefiles 10/12



Examples

• Let’s look at some simple examples of make and Makefiles for building C
programs and libraries

UNX511 W2C1 - Libraries, Make and Makefiles 11/12



Alternatives to Make

• These days, it seems like just about every programming language has its own
build system

• Many IDEs have (effectively) a make command built-in
• GNU automake and autoconf provide tools to build Makefiles from
templates

UNX511 W2C1 - Libraries, Make and Makefiles 12/12



Summary

• Libraries are useful, and key building blocks
• make (and similar tools) are great productivity and consistency tools

UNX511 W2C1 - Libraries, Make and Makefiles 13/12


	Introduction to Libraries
	Make and Makefiles

