
Advanced File I/O
UNX511 Week 4 Class 1

John Sellens
May 27, 2025

Seneca Polytechnic

Outline

Bitwise Operations and Flags

Advanced File I/O

UNX511 W4C1 - Advanced File I/O 1/7

Bitwise Operations and Flags

Programming, Flags, and Bit Fields

• In programming, we often want to keep track of boolean flags
• e.g. a person could be a club member, with gym access, and restaurant charge
privileges – 3 yes/no flags

• We could use separate variables, or a one variable that holds all flags
• Yes/no, on/off flags or settings can be indicated by binary digits
• A 32 bit unsigned integer can hold 32 different boolean flags
• When used in this way, we call the variable a “bit field”
• We can use bit fields to pass a set of options to a function e.g. open(2)
• https://en.wikipedia.org/wiki/Bit_field

UNX511 W4C1 - Advanced File I/O 2/7

https://en.wikipedia.org/wiki/Bit_field

Bit Fields in C

• In C, the typical method is
• Define numeric constants that set one bit per constant
• Declare variables to contain bit fields
• Use bitwise operators to combine or query bit fields

• Compare logical && and || with bitwise & and |
• Also bitwise exclusive OR ^ and bitwise NOT ~
• e.g. open(file, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR)

• See defines in /usr/include/asm-generic/fcntl.h

• https://en.wikipedia.org/wiki/Bitwise_operations_in_C
• See example week4_1/2_fcntl_race/fcntl.cpp

UNX511 W4C1 - Advanced File I/O 3/7

https://en.wikipedia.org/wiki/Bitwise_operations_in_C

Advanced File I/O

File Descriptor Manipulation and the Shell

• Recall that the shell (e.g. bash) provides I/O redirection and command pipes
• And starts commands with stdin, stdout, stderr attached elsewhere

• To redirect output to a file, shell opens file, and runs the command with file
descriptor 1 open to that file

• But when the shell open()ed the file, it didn’t get file descriptor 1
• The functions dup() and dup2() allow you to copy file descriptors to new
integers

• dup2() lets you specify e.g. file descriptor 1

• The functions pipe() and pipe2() create pipes and return a file descriptor
pair that can also be dup()ed

• A file descriptor can be fdopen()ed for stdio

UNX511 W4C1 - Advanced File I/O 4/7

File Offsets

• An open file descriptor has a related “file offset”
• Basically where in the file the next read/write will happen

• Reading or writing the file advances the file offset
• You can manipulate the file offset with lseek(2) fseek(3) and ftell(3)
• pread(2) and pwrite(2) let you specify an offset

• Saves a separate explicit lseek(2) call

• readv(2) and writev(2) let you read or write multiple buffers at a time

UNX511 W4C1 - Advanced File I/O 5/7

Code Examples

• week4_1/1_fileDup – introduction to dup()
• week4_1/2_fcntl_race – file writing with overlapping offsets
• week4_1/3_offset – reading at various offsets
• week4_1/4_structures – writing C structs

UNX511 W4C1 - Advanced File I/O 6/7

Summary

• Lots of details and functionality for reading and writing

UNX511 W4C1 - Advanced File I/O 7/7

	Bitwise Operations and Flags
	Advanced File I/O

