
Processes and Process Creation
UNX511 Week 6 Class 1

John Sellens
June 10, 2025

Seneca Polytechnic



Outline

Processes – Let’s Review

Processes and Process Creation

UNX511 W6C1 - Processes and Process Creation 1/8



Processes – Let’s Review



Processes

• Programs (commands) run in processes
• All processes are children of some parent process
• Processes are a tree – all descendants of process ID 1
• Processes have memory, and use resources
• Processes have attributes – process ID, user, working directory, umask, etc.
• Shells run commands for us

• By creating processes
• Standalone, or in pipes
• And providing job control tools (fg, bg, kill, etc.)

UNX511 W6C1 - Processes and Process Creation 2/8



Process Memory Usage

• A process’s memory is organized into “segments”
• Text, data, heap, stack, …

• See the discussion https://github-pages.senecapolytechnic.ca/
unx511/Week6/ProcessAddressSpace.docx

UNX511 W6C1 - Processes and Process Creation 3/8

https://github-pages.senecapolytechnic.ca/unx511/Week6/ProcessAddressSpace.docx
https://github-pages.senecapolytechnic.ca/unx511/Week6/ProcessAddressSpace.docx


Processes and Process Creation



Process Creation

• Every process is (was) created by a parent process
• The parent calls fork(2) (or vfork(2)) to create a copy of itself – the child
process

• The child process gets a copy of the parent’s memory

• And then the new child process either continues running the same program,
• Or replaces itself with some other program using execve(2) or exec(3)

UNX511 W6C1 - Processes and Process Creation 4/8



System Calls and Library Functions

• fork(2) – create a new process, with copy of memory
• vfork(2) – create a new process, but delay copying memory

• More efficient if you’re going to immediately execve()

• execve(2) – replace running program with a different program
• exec(3) – handy cover functions for execve()
• wait(2) – wait for a (any) child process to exit
• waitpid(2) – wait for a particular child process to exit
• See a summary of these functions in
https://github-pages.senecapolytechnic.ca/unx511/Week6/
ProcessCreationAndTermination.docx

UNX511 W6C1 - Processes and Process Creation 5/8

https://github-pages.senecapolytechnic.ca/unx511/Week6/ProcessCreationAndTermination.docx
https://github-pages.senecapolytechnic.ca/unx511/Week6/ProcessCreationAndTermination.docx


System Calls and Library Functions, cont’d

• _exit(2) – terminate calling process immediately
• exit(3) – tidy up and then call _exit()
• on_exit(3) – call a function on exit() – Linux specific
• atexit(3) – call a function on exit() – POSTX

UNX511 W6C1 - Processes and Process Creation 6/8



Process Code Samples

• 1_fork – create a child, continue same program
• 2_exec – create a child, run a different command

• The shell does this very often

• 3_on_exit – call function(s) on exit
• 4_sysmonFork – monitor network interfaces with child processes
• 5_sysmonExec – the same, but run a separate monitor command
• Let’s have a look …

UNX511 W6C1 - Processes and Process Creation 7/8



Summary

• As always, processes are a fundamental aspect of Linux/UNIX systems
• System programmers (and most others) need to have an understanding of
process creation and management

• Next class: signals!

UNX511 W6C1 - Processes and Process Creation 8/8


	Processes – Let's Review
	Processes and Process Creation

